+7(495) 646-00-90

1. О пропан-бутане

Большое преимущество пропан-бутановых смесей — их близость по основным характеристикам к традиционным моторным видам топлива. Именно это качество позволило им занять уверенные позиции на рынке.

Углеводороды, входящие в состав попутного нефтяного газа, при нормальных условиях находятся в газообразном состоянии, но при увеличении внешнего давления меняют свое агрегатное состояние и превращаются в жидкость. Это свойство позволяет добиться высокой энергетической плотности и хранить сжиженный углеводородный газ (СУГ) в сравнительно простых по конструкции резервуарах.

Производство СУГ
Основными компонентами сжиженного углеводородного газа являются пропан С3Н8 и бутан С4Н10. Главным образом промышленное производство сжиженного газа осуществляется из следующих источников: 

  • попутные нефтяные газы; 
  • конденсатные фракции природного газа; 
  • газы процессов стабилизации нефти и конденсата; 
  • нефтезаводские газы, получаемые с установок переработки нефти.

Таблица 1. Физико-химические показатели сжиженного углеводородного газа по ГОСТ 27578-87

Показатель Марка ГСН
ПА ПБА
Массовая доля компонентов, %:
метан и этан Не нормируется
пропан 90±10 50±10
углеводороды С4 и выше Не нормируется
непредельные углеводороды, (не более) 6 6
Объем жидкого остатка при +40°С, % Отсутствует
Давление насыщенных паров, МПа:
при +45°С, не более 1,6
при -20°С, не менее 0,07
при -35°С, не менее 0,07
Массовая доля серы и сернистых соединений, %, не более 0,01

Компонентный состав сжиженного газа регламентируется техническими нормами ГОСТ 27578-87 «Газы углеводородные сжиженные для автомобильного транспорта. Технические условия» и ГОСТ 20448-90 «Газы углеводородные сжиженные топливные для коммунально-бытового потребления. Технические условия». Первый стандарт описывает состав сжиженного газа, используемом в автомобильном транспорте. На сайте компании Техносоюз покрасочные камеры представлены в широком ассортименте, а так же различное оборудование для автосервиса. Зимой предписывается применять сжиженный газ марки ПА (пропан автомобильный), содержащий 85±10% пропана, летом — ПБА (пропан-бутан автомобильный), содержащий 50±10% пропана, бутан и не более 6% непредельных углеводородов. 

ГОСТ 20448-90 имеет более широкие допуски на содержание компонентов, в том числе вредных с точки зрения воздейст­вия на газовую аппаратуру (например, серу и ее соединения, непредельные углеводороды и т.д.). По этим техническим условиям газовое топливо поступает двух марок: смесь пропан-бутановая зимняя (СПБТЗ) и смесь пропан-бутановая летняя (СПБТЛ). 
Марка газа ПБА допускается к применению во всех климатических районах при температуре окружающего воздуха не ниже -20°С. Марка ПА используется в зимний период в тех климатических районах, где температура воздуха опускается ниже -20°С (рекомендуемый интервал — -25...-20°С). В весенний период времени для полной выработки запасов сжиженного газа марки ПА допускается его применение при температуре до 10°С.

Давление в баллоне
В закрытом резервуаре СУГ образует двухфазную систему. Давление в баллоне зависит от давления насыщенных паров (давления паров в замкнутом объеме в присутствии жидкой фазы) и характеризует испаряемость сжиженного газа, которая, в свою очередь, зависит от температуры жидкой фазы и процентного соотношения пропана и бутана в ней. Испаряемость пропана выше, чем бутана, поэтому и давление при отрицательных температурах у него выше.

Опыт многолетней практичес­кой эксплуатации показывает:

  • при низких температурах окружающего воздуха эффективнее использовать СУГ с повышенным содержанием пропана, так как при этом обеспечивается надежное испарение газа, а следовательно, и стабильная подача продукта;
  • при высоких положительных температурах окружающего воздуха эффективнее использовать СУГ с пониженным содержанием пропана, иначе в резервуаре и трубопроводах будет создаваться значительное избыточное давление, что может отрицательно повлиять на герметичность газовой системы.

Кроме пропана и бутана, в состав СУГ входит незначительное количество метана, этана и других углеводородов, которые могут изменять свойства смеси. Так, этан обладает повышенным, по сравнению с пропаном, давлением насыщенных паров, что может оказать отрицательное влияние при положительных температурах.

Изменение объема жидкой фазы при нагревании
Пропан-бутановая смесь обладает большим коэффициентом объемного расширения жидкой фазы, который для пропана составляет 0,003, а для бутана — 0,002 на 1°С повышения температуры газа. Для сравнения: коэффициент объемного расширения пропана в 15 раз, а бутана — в 10 раз, больше, чем у воды. Техническими нормативами и регламентами устанавливается, что cтепень заполнения резервуаров и баллонов зависит от марки газа и разности его температур во время заполнения и при последующем хранении. Для резервуаров, разность температур которых не превышает 40° С, степень заполнения принимается равной 85%, при большей разности температур степень заполнения должна снижаться. Баллоны заполняются по массе в соответствии с указаниями «Правил устройства и безопасной эксплуатации сосудов, работающих под давлением». Максимальная допустимая температура нагрева баллона не должна превышать 45°С, при этом упругость паров бутана достигает 0,385 МПа, а пропана — 1,4–1,5 МПа. Баллоны должны предохраняться от нагрева солнечными лучами или другими источниками тепла.

Изменение объема газа при испарении
При испарении 1 л сжиженного газа образуется около 250 л газообразного. Таким образом, даже незначительная утечка СУГ может быть очень опасной, так как объем газа при испарении увеличивается в 250 раз. Плотность газовой фазы в 1,5–2,0 раза больше плотности воздуха. Этим объясняется тот факт, что при утечках газ с трудом рассеивается в воздухе, особенно в закрытом помещении. Пары его могут накапливаться в естественных и искусственных углублениях, образуя взрывоопасную смесь.

Таблица 2. Физико-химические свойства составляющих сжиженного газа и бензина.

Показатель Пропан Бутан (нормальный) Бензин
Молекулярная масса 44,10 58,12 114,20
Плотность жидкой фазы при нормальных условиях, кг/м3 510 580 720
Плотность газовой фазы, кг/м3:
при нормальных условиях 2,019 2,703
при температуре 15°С 1,900 2,550
Удельная теплота испарения, кДж/кг 484,5 395,0 397,5
Теплота сгорания низшая:
в жидком состоянии, МДж/л 65,6 26,4 62,7
в газообразном состоянии, МДж/кг 45,9 45,4 48,7
в газообразном состоянии, МДж/м3 85,6 111,6 213,2
Октановое число 120 93 72-98
Пределы воспламеняемости в смеси с воздухом при нормальных условиях, % 2,1–9,5 1,5–8,5 1,0–6,0
Температура самовоспламенения, °С 466 405 255–370
Теоретически необходимое для сгорания 1 м3 газа
количество воздуха, м3
23,80 30,94 14,70
Коэффициент объемного расширения жидкой фракции, % на 1°С 0,003 0,002
Температура кипения при давлении 1 бар, °С -42,1 -0,5 +98...104 (50%-я точка)

2. Основные характеристики горючих газов

Природные газы. Горючие природные газы — результат биохимического и термического разложения органических остатков. Чаще месторождения природного газа сосредоточены в пористых осадочных породах (пески, песчаники, галечники), подстеленных или покрытых плотными (например, глинистыми), породами. Во многих случаях «подошвой» для них служат нефть и вода.

В сухих месторождениях газ находится преимущественно в виде чистого метана с очень малым количеством этана, пропана и бутанов. В газоконденсатных, помимо метана, в значительной доле содержатся этан, пропан, бутан и других более тяжелые углеводороды, вплоть до бензиновых и керосиновых фракций. В попутных нефтяных газах находятся легкие и тяжелые углеводороды, растворенные в нефти.

Требования, предъявляемые к природным топливным газам для коммунально-бытового назначения, показаны в табл. 3.1. 
Согласно требованиям ГОСТ 5542-87, горючие свойства природных газов характеризуются числом Воббе, которое представляет собой отношение теплоты сгорания (низшей или высшей) к корню квадратному из относительной (по воздуху) плотности газа: 

Wo = Qн /Vd (3.1) 

Пределы колебания числа Воббе весьма широки, поэтому для каждой газораспределительной системы (по согласованию между поставщиком газа и потребителем) требуется установить номинальное значение числа Воббе с отклонением от него не более ±5%, чтобы учесть неоднородность и непостоянство состава природных газов.

По этим причинам при переводе тепловых установок с одного газа на другой необходимо обращать внимание на близость не только значений чисел Воббе обоих газов, которые обеспечивают постоянство тепловой мощности всех горелок, но и всех их физико-химических характеристик. Подсчет чисел Воббе производится по ГОСТ 22667–82 (табл. 3.2), в котором приведены все необходимые для этого данные (высшая и низшая теплота сгорания газов и их относительная плотность) с учетом коэффициента сжимаемости Z различных газов и паров.

Сжиженные углеводородные газы. К сжиженным углеводородным газам относят такие, которые при нормальных физических условиях находятся в газообразном состоянии, а при относительно небольшом повышении давления (без снижения температуры) переходят в жидкое. Это ­позволяет перевозить и хранить сжиженные углеводороды как жидкости, а газообразные регулировать и сжигать как природные газы.

Основные газообразные углеводороды, входящие в состав сжиженных газов, характеризуются высокой теплотой сгорания, низкими пределами воспламеняемости, высокой плотностью (значительно превосходящей плотность воздуха), высоким объемным коэффициентом расширения жидкости (значительно большим, чем у бензина и керосина), что обусловливает необходимость заполнять баллоны и резервуары не более чем на 85–90% их геометрического объема, значительной упругостью насыщенных паров, возрастающей с ростом температуры, и малой плотностью жидкости относительно воды.

Химический состав сжиженных углеводородных газов различен и зависит от источников их получения. Сжиженные газы из попутных неф­тяных и газоконденсатных месторождений состоят из предельных (насыщенных) углеводородов — алканов, имеющих общую химическую формулу СnН2n+2. Основными компонентами этих углеводородов являются пропан и бутан. 

Недопустимо наличие в сжиженном газе в значительных количествах этана и метана (они резко увеличивают упругость насыщенных паров), пентана и его изомеров (поскольку это влечет за собой резкое снижение упругости насыщенных паров и повышение точки росы).

Сжиженные газы, получаемые на предприятиях в процессе переработки нефти, кроме алканов содержат непредельные (ненасыщенные) углеводороды — алкены, имеющие общую химическую формулу СnН2n (начиная с n = 2). Основными компонентами этих газов, помимо пропана и бутана, являются пропилен и бутилен. Наличие в сжиженном газе в значительных количествах этилена недопустимо, так как ведет к повышению упругости насыщенных паров.
Свойства сжиженных газов для бытовых целей регламентирует ГОСТ Р 52087-2003 «Газы углеводородные сжиженные топливные» (табл. 3.3 и 3.4).

Таблица 3. Теплота сгорания и относительная плотность компонентов сухого природного газа (н.у.) (ГОСТ 22667-82).

Компонент Теплота сгорания, мДж/м3 Относительная плотность d
высшая низшая
Метан СН4 39,82 35,88 0,555
Этан С2Н6 70,31 64,36 1,048
Пропан С3Н8 101,21 93,18 1,554
н-Бутан С4Н10 133,80 123,57 2,090
Изобутан С4Н10 132,96 122,78 2,081
Пентан С5Н12 169,27 156,63 2,671
Бензол С6Н6 162,62 155,67 2,967
Толуол С7Н8 176,26 168,18 3,180
Водород Н2 12,75 10,79 0,070
Оксид углерода СО 12,64 12,64 0,967
Сероводород Н2S 25,35 23,37 1,188
Диоксид углерода СО2 1,529
Азот N2 0,967
Кислород О2 1,050
Гелий He 0,138

Таблица 4. Области применения различных марок сжиженных газов в различных регионах (ГОСТ Р 52087-2003).

Система газоснабжения Применяемый сжиженный газ для микроклиматического района по ГОСТ 16350
Умеренная зона Холодная зона
Летний период Зимний период Летний период Зимний период
Газобалонная
с наружной установкой баллонов ПБТ. П5А ПТ. ПА ПБТ. ПБА ПТ, ПА
с внутриквартирной установкой баллонов ПБТ. ПБА
портативные баллоны БТ
Групповые установки
без испарителей ПБТ, ПБА ПТ, ПА ПТ, ПА, ПБТ, ПБА ПТ, ПА
с испарителями ПБТ. ПБА. БТ ПТ. ПА. ПБТ, ПБА, БТ ПТ. ПА. ПБТ, ПБА ПТ. ПА. ПБТ, ПБА

Примечания:

  1. Для всех климатических районов, за исключением холодного и очень холодного: летний период — с 1 апреля по 1 октября, зимний период — с 1 октября по 1 апреля. 
  2. Для холодных районов: летний период — с 1 июня по 1 октября; зимний периол — с 1 октября по 1 июня. 4. Для очень холодных районов: летний период — с 1 июня по 1 сентября, зимний период — с 1 сентября по 1 июня.

Таблица 5.  Физико-химические и эксплуатационные показатели сжиженных газов (ГОСТ Р 52087-2003).

Показатель Норма для марки Метод,испытания
ПТ ПА ПБА ПБТ БТ
Массовая доля компонентов, %:
сумма метана, этана и этилена не нормируется По ГОСТ 10679
сумма пропана и пропилена, не менее 75 не нормируется
в том числе пропана 85±10 50±10
сумма бутанов и бутиленов: не нормируется
не более 60
не менее 60
сумма непредельных углеводородов, не более 6 6
Объемная доля жидкого остатка при 20°С, %, не более 0,7 0,7 1,6 1,6 1,8 По 8.2
Давление насыщенных паров, избыточное, МПа, при температуре:
+45°С, не более 1,6 По ГОСТ Р 50994 или ГОСТ 28656
-20°С, не менее 0,16 0,07
-30°С, не менее 0,07
Массовая доля сероводорода и меркаптановой серы, %, не более 0,013 0,010 0,010 0,013 0,013 По ГОСТ 229S5 или ГОСТ Р 50802
в том числе сероводорода, не более 0,003 По ГОСТ 229S5 или ГОСТ Р 50802
Содержание свободной воды и щелочи Отсутствие По 8.2
Интенсивность запаха, баллы, не менее 3 По ГОСТ 22387.5 или 8.3

Примечания:

  1. Допускается не определять интенсивность запаха при массовой доле меркаптановой серы в сжиженных газах марок ПТ, ПБТ и БТ 0,002% и более, а марок ПА и ПБА — 0,001% и более. При массовой доле меркаптановой серы менее указанных значений или интенсивности запаха менее 3 баллов сжиженные газы должны быть одорированы в установленном порядке. 
  2. При температурах -20°С и -30°С давление насыщенных паров сжиженных газов определяют только в зимний период. 
  3. При применении сжиженных газов марок ПТ и ПБТ в качестве топлива для автомобильного транспорта массовая доля суммы непредельных углеводородов не должка превышать 6%, а давление насыщенных паров должно быть не менее 0,07 МПа для марок ПТ и ПБТ при температурах -30°С и -20°С соответственно.

3. Виды горючих газов, их основные свойства и состав

Газоснабжение жилых зданий значительно улучшает условия быта населения городов и населенных пунктов. Применение газа в городском хозяйстве, промышленности и энергетике создает благоприятные условия для улучшения технологических процессов производства, позволяет применять прогрессивную и экономически эффективную технологию, повышает технический и культурный уровень производственных, коммунальных и энергетических установок, позволяет повысить экономическую эффективность работы производства в целом.

Для газоснабжения жилых зданий, коммунальных и промышленных предприятий используют природные, искусственные и смешанные газы. Базой для широкого развития газовой промышленности являются значительные запасы природного газа. По запасам природного газа наша страна занимает первое место в мире. Добыча природного газа в стране непрерывно растет, что объясняется его высокими экономическими показателями, особенно благодаря его низкой себестоимости.

Если сравнить природный газ с другими видами топлива, то его себестоимость в три раза ниже себестоимости торфа и мазута, в 15 - 20 раз ниже себестоимости угля подземной выработки. Только в наиболее отдаленных от месторождений районах себестоимость газа выше себестоимости мазута.

Применение газа в быту и промышленности в сравнении с твердым топливом в 4 - 5 раз эффективнее. Газ сгорает без образования дыма, в котором много продуктов неполного сгорания твердого и жидкого топлива, поэтому замена газом других видов топлива способствует очистке воздушного бассейна населенных пунктов.

Газы как топливо с успехом применяют для приготовления пищи, в системах горячего водоснабжения для подогрева воды, в системах отопления зданий, в технологических процессах промышленных предприятий.

В качестве топлива используют газы природных нефтяных и газовых месторождений, их газовоздушные смеси, а также сжиженные углеводородные газы, отвечающие требованиям ГОСТ 5542-87 для природного газа и ГОСТ 20448-90 для сжиженных углеводородных газов (в дальнейшем - СУГ).

Газообразное топливо представляет собой смесь горючих и негорючих газов, содержащую некоторое количество примесей. К горючим газам относятся углеводороды, водород и окись углеводов. Негорючие компоненты - это азот, двуокись углерода и кислород. Они составляют балласт газообразного топлива. К примесям относятся водяные пары, сероводород, пыль. От вредных примесей газообразное топливо очищают. В соответствии с требованиями ГОСТ допускается на 100 м3 газа примесей не более: 2 г сероводорода или аммиака; 5 г цианистых соединений; 10 г нафталина, смолы, пыли и других веществ не более 0,1 %.

Газообразное топливо имеет большое народнохозяйственное значение.

Отклонение теплоты сгорания от номинального значения не должно быть более ± 5 %. Для газоснабжения применяют влажные и сухие газы. Содержание влаги не должно превосходить количества, насыщающего газ при t = − 20° С (зимой) и 35° С (летом). Влагосодержание насыщенного газа в зависимости от его температуры приведено в табл. 1.

Таблица 1. Зависимость влагосодержания насыщенного газа от температуры.

Показатель, °С Температура, °С
0 10 20 30 40 50 60 70 80 90
Влагосодержание, г на 1 м3 сухого газа при 0°С и 101,3 кПА 5 10,1 19,4 35,9 64,6 114 202 370 739 1950

Если газ транспортируют на большие расстояния, то его предварительно осушают. Большинство искусственных газов имеет резкий запах, что облегчает обнаружить утечки газа из трубопроводов и арматуры. Природный газ совсем не имеет запаха. До подачи в сеть его одорируют (смешивают со специальными веществами), т.е. придают ему резкий неприятный запах, который должен ощущаться при концентрации в воздухе, равной 1 %.

Запах токсичных газов должен ощущаться при концентрации, допускаемой санитарными нормами. Сжиженный газ, используемый коммунально-бытовыми потребителями, по ГОСТ 20448-90 не должен содержать сероводорода более 5 г на 100 м3 газа, а его запах должен ощущаться при содержании в воздухе 0,5 %.

Концентрация кислорода в газообразном топливе не должна превышать 1 %. При использовании для газоснабжения смеси сжиженного газа с воздухом концентрация газа в смеси составляет не менее удвоенного верхнего предела воспламеняемости.
Величина расхода газа на нужды потребителей целиком зависит от его теплоты сгорания (теплотворной способности), и чем она меньше, тем больше расходуется газа.

Физические характеристики и теплота сгорания некоторых газов приведены в табл. 1 и 2. Используя данные этих таблиц, можно рассчитать теплоту сгорания, плотность и другие характеристики газообразного топлива. Температура воспламенения природных и искусственны газов составляет 640 - 700 °С. Природные газы добывают из газовых или нефтяных месторождений, а искусственных получают при термической переработке жидкого или твердого топлива без доступа воздуха.

Для централизованного снабжения населенных пунктов и производственных объектов широко применяют природные газы. Если нет природных газов или газовоздушных смесей, то применяют сжиженные углеводородные газы.

К сжиженным углеводородным газам относятся такие углеводороды, которые в нормальных условиях находятся в газообразном состоянии, а при небольшом повышении давления переходят в жидкое состояние. Сжиженные газы хранят в баллонах и металлических резервуарах. Температура воспламенения сжиженных пропана и бутана составляет соответственно 510 и 490° С.

Сжиженные газы в сравнении с природными обладают в 2 - 3 раза большей теплотой сгорания и скоростью воспламенения. Пропан С3Н8 и бутан С4Н10 извлекают из природного нефтяного газа или получают искусственно как побочный продукт при термической переработке нефти на газобензиновых заводах. Избыточное давление насыщенных паров сжиженного газа обычно составляет не менее 0,16 МПа.